

EGNOS Market update

EGNOS Status

Carmen Aguilera – Market Downstream and Innovation 5th October 2022, Prague

EGNOS is becoming mainstream in aviation

EGNOS approaches in all Member States, NO, CH, IS

- √ 835 EGNOS-based approaches in 439 EU destinations
- ✓ More than 65% of EU IRE with SBAS
- ✓ Point in Space and Low level routes in Switzerland, Italy, Sweden, Norway

Avionics available for all airspace users

New EU avionics for commercial aircraft hit the market in 2022

Airbus delivered to EasyJet the first A320 equipped with the EGNOS

Fokker completed a STC for LPV on B737NG with ASL Belgium

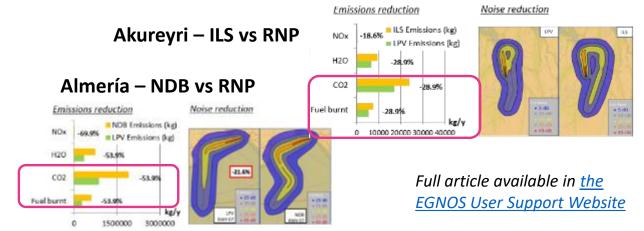
- ✓ More than 250 STCs and 80 SBs available for LPV implementation on about 200 different aircraft models
- ✓ Offered as "LineFit" for 90 aircraft models

EGNOS supports Greener Aviation

Scenarios where EGNOS can support greener aviation

Closer alternate

Missed Approach reduction


Track reduction

Rationalization of conventional radio NavAids infrastructure

LPV to runways without instrument approach procedures published

Environmental showcases

Theoretical estimation of emissions and noise reduction thanks to EGNOS together with optimal aircraft performance at Akureyri and Almería.

New Online Environmental tool available

Estimate potential savings in fuel and CO2 thanks to EGNOS LPV in the <u>EGNOS User Support Website</u>.

Combining EGNOS with Enhanced Vision systems New guidelines under development

WHY?

Support aircraft operators, aerodrome operators and ANSPs by providing high-level material to facilitate the implementation of EFVS & SBAS/LPV under the updated EASA AWO regulations.

Benefits of integration of EFVS + SBAS

Greater availability of suitable destination and alternate aerodromes.

Reduces the number of weather-related delays, cancellations or diversions of flights.

Shorter routings (reducing fuel costs and environmental impact).

Enables a faster return to scheduled operations.

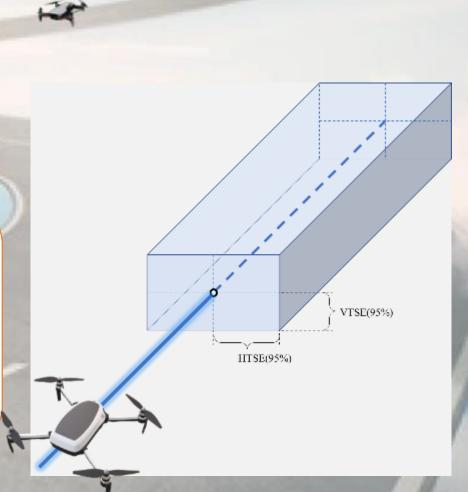
What's next

Ongoing consultation of guidelines with stakeholders Validation in partnership with an operator aiming to implement EFVS during SBAS approaches.

Support to All Weather Operations

Adapting the RNP concept to drone operations

The Specific Operations Risk Assessment (SORA) requires ensuring containment of the drone within a 3D corridor along the desired flight path.

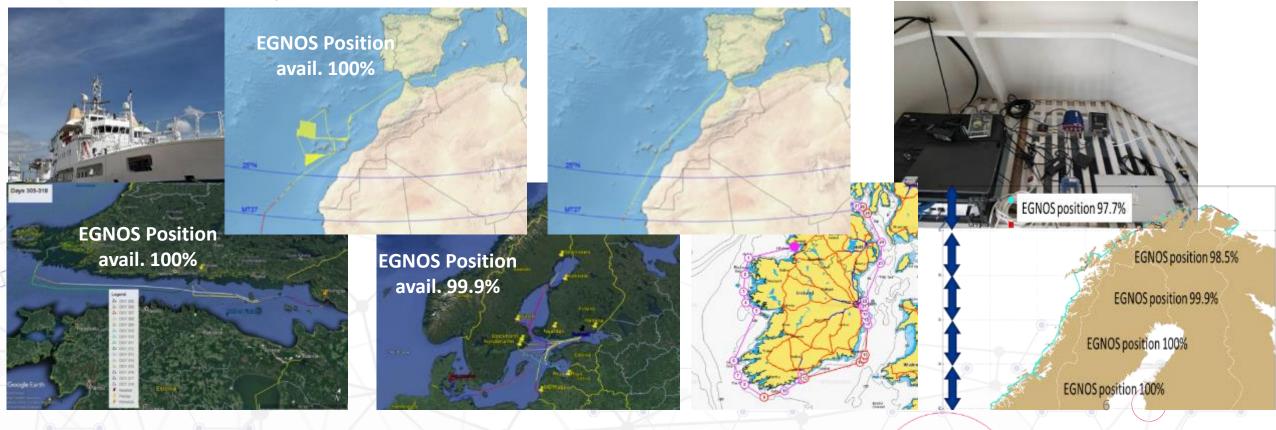

- PVT source: mainly GNSS
- Desired flight path, flyability, definition and coding
- Autopilot: characterisation & op envelope

New mechanism for on board performance monitoring and alerting suited to drone dynamics

From User consultation Platform on Monday

- 1. Horizontal NSE (m): 3 8 m *
- Vertical NSE (m): 4 13 m *
- TTA: <6s
- Alert limits:
 - HAL:
 - a) 25 -27 m (fixed wing)
 - b) 10 14 m (rotary)
 - - a) 12 22 m (fixed wing)
 - b) 7-23 m (rotary)
- Continuity: 1-1E-4/hr
- 7. Availability: 0.9999

* Anticipated to be more stringent for terminal, take-off and landing



Towards an EGNOS maritime service Data collection campaigns in the border of the coverage area

can support "Navigation in harbour entrances/approaches and coastal/ocean waters" according to IMO Res A.1046 (27)

Supporting ERTMS with EGNSS

Draft ERTMS change request documentation prepared in cooperation between space and rail sector addressing:

- GNSS Augmentation System
- Draft Failure Modes and Effects Analysis for GNSS Augmentation
- Draft FIS for GNSS Augmentation
- Draft Receiver guidelines for onboard and trackside

Revision of ERTMS Technical Specifications for Interoperability (TSI) including future integration of GNSS will be addressed within ERJU System Pillar

Coordination with main EU stakeholder associations & agencies

Receiver prototyping launched in 2021

Mission study for GNSS rail service

www.euspaceweek.eu

#EUSW 2022

